Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(51): 59134-59144, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38102079

RESUMO

Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered in vivo is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity. Here, we used a simple design of a microfluidic chip with two types of ECM and MCF7 spheroids to allow "high-throughput" screening of the interactions between biological interfaces and polymeric micelles. To demonstrate the applicability of the chip, a small library of fluorescently labeled polymeric micelles varying in their hydrophilic shell and hydrophobic core forming blocks was studied. Three widely used hydrophilic shells were tested and compared, namely, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid), along with two enzymatically degradable dendritic hydrophobic cores (based on hexyl or nonyl end groups). Using ratiometric imaging of unimer:micelle fluorescence and FRAP inside the chip model, we obtained the local assembly state and dynamics inside the chip. Notably, we observed different micelle behaviors in the basal lamina ECM, from avoidance of the ECM structure to binding of the poly(acrylic acid) formulations. Binding to the basal lamina correlated with higher uptake into MCF7 spheroids. Overall, we proposed a simple microfluidic chip containing dual ECM and spheroids for the assessment of the interactions of polymeric nanocarriers with biological interfaces and evaluating nanoformulations' capacity to cross the tumor tissue barrier.


Assuntos
Micelas , Neoplasias , Humanos , Polímeros/química , Polietilenoglicóis/química , Matriz Extracelular , Dispositivos Lab-On-A-Chip , Portadores de Fármacos/química
3.
ACS Polym Au ; 2(5): 380-386, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36855583

RESUMO

Enzyme-responsive polymeric micelles hold great potential as drug delivery systems due to the overexpression of disease-associated enzymes. To achieve selective and efficient delivery of their therapeutic cargo, micelles need to be highly stable and yet disassemble when encountering their activating enzyme at the target site. However, increased micellar stability is accompanied by a drastic decrease in enzymatic degradability. The need to balance between stability and enzymatic degradation has severely limited the therapeutic applicability of enzyme-responsive nanocarriers. Here, we report a general modular approach for designing stable enzyme-responsive micelles whose enzymatic degradation can be enhanced on demand. The control over their response to the activating enzyme is achieved by stimuli-induced splitting of triblock amphiphiles into two identical diblock amphiphiles, which have the same hydrophilic-lipophilic balance as the parent amphiphile. This architectural transition drastically affects the micelle-unimer equilibrium and therefore increases the sensitivity of the micelles toward enzymatic degradation. As a proof of concept, we designed UV- and reduction-activated splitting mechanisms, demonstrating the ability to use architectural transition as a tool for tuning amphiphile-protein interactions, providing a general solution toward overcoming the stability-degradability barrier for enzyme-responsive nanocarriers.

4.
ACS Nano ; 15(12): 20539-20549, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34878763

RESUMO

Functional composite materials that can change their spectral properties in response to external stimuli have a plethora of applications in fields ranging from sensors to biomedical imaging. One of the most promising types of materials used to design spectrally active composites are fluorescent single-walled carbon nanotubes (SWCNTs), noncovalently functionalized by synthetic amphiphilic polymers. These coated SWCNTs can exhibit modulations in their fluorescence spectra in response to interactions with target analytes. Hence, identifying new amphiphiles with interchangeable building blocks that can form individual coronae around the SWCNTs and can be tailored for a specific application is of great interest. This study presents highly modular amphiphilic polymer-dendron hybrids, composed of hydrophobic dendrons and hydrophilic polyethylene glycol (PEG) that can be synthesized with a high degree of structural freedom, for suspending SWCNTs in aqueous solution. Taking advantage of the high molecular precision of these PEG-dendrons, we show that precise differences in the chemical structure of the hydrophobic end groups of the dendrons can be used to control the interactions of the amphiphiles with the SWCNT surface. These interactions can be directly related to differences in the intrinsic near-infrared fluorescence emission of the various chiralities in a SWCNT sample. Utilizing the susceptibility of the PEG-dendrons toward enzymatic degradation, we demonstrate the ability to monitor enzymatic activity through changes in the SWCNT fluorescent signal. These findings pave the way for a rational design of functional SWCNTs, which can be used for optical sensing of enzymatic activity in the near-infrared spectral range.


Assuntos
Dendrímeros , Nanotubos de Carbono , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis , Polímeros
5.
Macromolecules ; 54(4): 1577-1588, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33642615

RESUMO

Enzyme-responsive polymers and their assemblies offer great potential to serve as key materials for the design of drug delivery systems and other biomedical applications. However, the utilization of enzymes to trigger the disassembly of polymeric amphiphiles, such as micelles, also suffers from the limited accessibility of the enzyme to moieties that are hidden inside the assembled structures. In this Perspective, we will discuss examples for the utilization of high molecular precision that dendritic structures offer to study the enzymatic degradation of polymeric amphiphiles with high resolution. Up to date, several different amphiphilic systems based on dendritic blocks have all shown that small changes in the hydrophobicity and amphiphilicity strongly affected the degree and rate of enzymatic degradation. The ability to observe the huge effects due to relatively small variations in the molecular structure of polymers can explain the limited enzymatic degradation that is often observed for many reported polymeric assemblies. The observed trends imply that the enzymes cannot reach the hydrophobic core of the micelles, and instead, they gain access to the amphiphiles by the unimer-micelle equilibrium, making the unimer exchange rate a key parameter in tuning the enzymatic degradation rate. Several approaches that are aimed at overcoming the stability-responsiveness challenge are discussed as they open the way to the design of stable and yet enzymatically responsive polymeric nanocarriers.

6.
Biomacromolecules ; 22(3): 1197-1210, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33512161

RESUMO

Enzymatically degradable polymeric micelles have great potential as drug delivery systems, allowing the selective release of their active cargo at the site of disease. Furthermore, enzymatic degradation of the polymeric nanocarriers facilitates clearance of the delivery system after it has completed its task. While extensive research is dedicated toward the design and study of the enzymatically degradable hydrophobic block, there is limited understanding on how the hydrophilic shell of the micelle can affect the properties of such enzymatically degradable micelles. In this work, we report a systematic head-to-head comparison of well-defined polymeric micelles with different polymeric shells and two types of enzymatically degradable hydrophobic cores. To carry out this direct comparison, we developed a highly modular approach for preparing clickable, spectrally active enzyme-responsive dendrons with adjustable degree of hydrophobicity. The dendrons were linked with three different widely used hydrophilic polymers-poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid) using the CuAAC click reaction. The high modularity and molecular precision of the synthetic methodology enabled us to easily prepare well-defined amphiphiles that differ either in their hydrophilic block composition or in their hydrophobic dendron. The micelles of the different amphiphiles were thoroughly characterized and their sizes, critical micelle concentrations, drug loading, stability, and cell internalization were compared. We found that the micelle diameter was almost solely dependent on the hydrophobicity of the dendritic hydrophobic block, whereas the enzymatic degradation rate was strongly dependent on the composition of both blocks. Drug encapsulation capacity was very sensitive to the type of the hydrophilic block, indicating that, in addition to the hydrophobic core, the micellar shell also has a significant role in drug encapsulation. Incubation of the spectrally active micelles in the presence of cells showed that the hydrophilic shell significantly affects the micellar stability, localization, cell internalization kinetics, and the cargo release mechanism. Overall, the high molecular precision and the ability of these amphiphiles to report their disassembly, even in complex biological media, allowed us to directly compare the different types of micelles, providing striking insights into how the composition of the micelle shells and cores can affect their properties and potential to serve as nanocarriers.


Assuntos
Micelas , Polímeros , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis
7.
Macromolecules ; 54(24): 11419-11426, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34987270

RESUMO

Polymeric assemblies, such as micelles, are gaining increasing attention due to their ability to serve as nanoreactors for the execution of organic reactions in aqueous media. The ability to conduct organic transformations, which have been traditionally limited to organic media, in water is essential for the further development of important fields ranging from green catalysis to bioorthogonal chemistry. Considering the recent progress that has been made to expand the range of organometallic reactions conducted using nanoreactors, we aimed to gain a deeper understanding of the roles of the hydrophobicity of both the core of micellar nanoreactors and the substrates on the reaction rates in water. Toward this goal, we designed a set of five metal-loaded micelles composed of polyethylene glycol-dendron amphiphiles and studied their ability to serve as nanoreactors for a palladium-mediated depropargylation reaction of four substrates with different log P values. Using dendrons as the hydrophobic block, we could precisely tune the lipophilicity of the nanoreactors, which allowed us to reveal linear correlations between the rate constants and the hydrophobicity of the amphiphiles (estimated by the dendron's cLog P). While exponential dependence was obtained for the lipophilicity of the substrates, a similar degree of rate acceleration was observed due to the increase in the hydrophobicity of the amphiphiles regardless of the effect of the substrate's log P. Our results demonstrate that while increasing the hydrophobicity of the substrates may be used to accelerate reaction rates, tuning the hydrophobicity of the micellar nanoreactors can serve as a vital tool for further optimization of the reactivity and selectivity of nanoreactors.

8.
Biomacromolecules ; 21(10): 4076-4086, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32833437

RESUMO

Tuning the enzymatic degradation and disassembly rates of polymeric amphiphiles and their assemblies is crucial for designing enzyme-responsive nanocarriers for controlled drug delivery applications. The common methods to control the enzymatic degradation of amphiphilic polymers are to tune the molecular weights and ratios of the hydrophilic and hydrophobic blocks. In addition to these approaches, the architecture of the hydrophilic block can also serve as a tool to tune enzymatic degradation and disassembly. To gain a deeper understanding of the effect of the molecular architecture of the hydrophilic block, we prepared two types of well-defined PEG-dendron amphiphiles bearing linear or V-shaped PEG chains as the hydrophilic blocks. The high molecular precision of these amphiphiles, which emerges from the utilization of dendrons as the hydrophobic blocks, allowed us to study the self-assembly and enzymatic degradation and disassembly of the two types of amphiphiles with high resolution. Interestingly, the micelles of the V-shaped amphiphiles were significantly smaller and disassembled faster than those of the amphiphiles based on linear PEG. However, the complete enzymatic cleavage of the hydrophobic end groups was significantly slower for the V-shaped amphiphiles. Our results show that the V-shaped architecture can stabilize the unimer state and, hence, plays a double role in the enzymatic degradation and the induced disassembly and how it can be utilized to control the release of encapsulated or bound molecular cargo.


Assuntos
Micelas , Polietilenoglicóis , Sistemas de Liberação de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Polímeros
9.
Chem Commun (Camb) ; 54(50): 6875-6878, 2018 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-29774332

RESUMO

Enyzme-responsive polymeric assemblies hold great potential for biomedical applications due to the over-expression of disease-associated enzymes, which can be utilized to activate such systems only in afflicted tissues. Herein we demonstrate that the overall molecular weight of polymeric amphiphiles, which have the same hydrophilic/hydrophobic ratio, can be tuned to create polymeric micelles with an extreme range of degradation rates. This approach expands the available set of molecular parameters that can be adjusted to tune the degradation rate of polymeric assemblies, paving new possibilities for rational design of polymeric systems with controlled degradation rates.

10.
Biomacromolecules ; 18(10): 3457-3468, 2017 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28858524

RESUMO

Enzyme-responsive polymeric micelles have great potential as drug delivery systems due to the high selectivity and overexpression of disease-associated enzymes, which could be utilized to trigger the release of active drugs only at the target site. We previously demonstrated that enzymatic degradation rates of amphiphilic PEG-dendron hybrids could be precisely tuned by gradually increasing the hydrophobic to hydrophilic ratio. However, with the increase in hydrophobicity, the micelles rapidly became too stable and could not be degraded, as often encountered for many other amphiphilic assemblies. Here we address the challenge to balance between stability and reactivity of enzymatically degradable assemblies by utilizing reversible dimerization of diblock polymeric amphiphiles to yield jemini amphiphiles. This molecular transformation serves as a tool to control the critical micelle concentration of the amphiphiles in order to tune their micellar stability and enzymatic degradability. To demonstrate this approach, we show that simple dimerization of two polymeric amphiphiles through a single reversible disulfide bond significantly increased the stability of their micellar assemblies toward enzymatic degradation, although the hydrophilic to hydrophobic ratio was not changed. Reduction of the disulfide bond led to dedimerization of the polymeric hybrids and allowed their degradation by the activating enzyme. The generality of the approach is demonstrated by designing both esterase- and amidase-responsive micellar systems. This new molecular design can serve as a simple tool to increase the stability of polymeric micelles without impairing their enzymatic degradability.


Assuntos
Biocatálise , Micelas , Tensoativos/química , Dendrímeros/química , Dimerização , Dissulfetos/química , Polietilenoglicóis/química
11.
Org Biomol Chem ; 14(24): 5813-9, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27093537

RESUMO

The design of stable polymeric micelles that can respond to specific stimuli is crucial for the development of smart micellar nanocarriers that can release their active cargo selectively at the target site, thus diminishing the therapeutic limitations due to non-selective damage to healthy tissues. Here we report the design and synthesis of photo- and enzyme-responsive amphiphilic PEG-dendron hybrids bearing one, two or four enzymatically cleavable azobenzene end-groups. These dual-responsive hybrids can respond to light through the reversible isomerization of the azobenzene end-groups from the non-polar trans isomer to the highly polar cis isomer and vice versa, upon UV and visible irradiation, respectively. The high structural precision of these hybrids, which emerges from the dendritic architecture, enabled a detailed study of the photoisomerization of the azobenzene end-groups with high molecular resolution. Remarkably, although the transition from trans-to-cis led to a significant increase in the polarity of the micellar cores, the micelles remained stable. Our kinetic studies show that although the trans isomer is a better substrate for the activating enzyme, the UV induced formation of the cis azobenzene end-groups led to significant acceleration of the enzymatic hydrolysis of the end-groups. These results provide strong indication that the enzyme cannot reach the core of the micelles and instead the end-groups have to leave the hydrophobic core in order to be exposed on the micelle's surface or even leave the micelle in order to allow their cleavage by the activating enzymes.


Assuntos
Compostos Azo/química , Enzimas/metabolismo , Processos Fotoquímicos , Polietilenoglicóis/química , Dendrímeros/química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Micelas , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...